Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37028353

RESUMO

Breast tumor detection and classification on the Internet of Medical Things (IoMT) can be automated with the potential of Artificial Intelligence (AI). However, challenges arise when dealing with sensitive data due to the dependence on large datasets. To address this issue, we propose an approach that combines different magnification factors of histopathological images using a residual network and information fusion in Federated Learning (FL). FL is employed to preserve the privacy of patient data, while enabling the creation of a global model. Using the BreakHis dataset, we compare the performance of FL with centralized learning (CL). We also performed visualizations for explainable AI. The final models obtained become available for deployment on internal IoMT systems in healthcare institutions for timely diagnosis and treatment. Our results demonstrate that the proposed approach outperforms existing works in the literature on multiple metrics.

2.
IEEE Trans Cybern ; 52(11): 11373-11384, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34033560

RESUMO

In the context of streaming data, learning algorithms often need to confront several unique challenges, such as concept drift, label scarcity, and high dimensionality. Several concept drift-aware data stream learning algorithms have been proposed to tackle these issues over the past decades. However, most existing algorithms utilize a supervised learning framework and require all true class labels to update their models. Unfortunately, in the streaming environment, requiring all labels is unfeasible and not realistic in many real-world applications. Therefore, learning data streams with minimal labels is a more practical scenario. Considering the problem of the curse of dimensionality and label scarcity, in this article, we present a new semisupervised learning technique for streaming data. To cure the curse of dimensionality, we employ a denoising autoencoder to transform the high-dimensional feature space into a reduced, compact, and more informative feature representation. Furthermore, we use a cluster-and-label technique to reduce the dependency on true class labels. We employ a synchronization-based dynamic clustering technique to summarize the streaming data into a set of dynamic microclusters that are further used for classification. In addition, we employ a disagreement-based learning method to cope with concept drift. Extensive experiments performed on many real-world datasets demonstrate the superior performance of the proposed method compared to several state-of-the-art methods.


Assuntos
Algoritmos , Análise por Conglomerados
3.
Neuroimage Clin ; 22: 101725, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798168

RESUMO

Brain imaging studies have revealed that functional and structural brain connectivity in the so-called triple network (i.e., default mode network (DMN), salience network (SN) and central executive network (CEN)) are consistently altered in schizophrenia. However, similar changes have also been found in patients with major depressive disorder, prompting the question of specific triple network signatures for the two disorders. In this study, we proposed Supervised Convex Nonnegative Matrix Factorization (SCNMF) to extract distributed multi-modal brain patterns. These patterns distinguish schizophrenia and major depressive disorder in a latent low-dimensional space of the triple brain network. Specifically, 21 patients of schizophrenia and 25 patients of major depressive disorder were assessed by T1-weighted, diffusion-weighted, and resting-state functional MRIs. Individual structural and functional connectivity networks, based on pre-defined regions of the triple network were constructed, respectively. Afterwards, SCNMF was employed to extract the discriminative patterns. Experiments indicate that SCNMF allows extracting the low-rank discriminative patterns between the two disorders, achieving a classification accuracy of 82.6% based on the extracted functional and structural abnormalities with support vector machine. Experimental results show the specific brain patterns for schizophrenia and major depressive disorder that are multi-modal, complex, and distributed in the triple network. Parts of the prefrontal cortex including superior frontal gyri showed variation between patients with schizophrenia and major depression due to structural properties. In terms of functional properties, the middle cingulate cortex, inferior parietal lobule, and cingulate cortex were the most discriminative regions.


Assuntos
Transtorno Depressivo Maior/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Aprendizado de Máquina Supervisionado , Adulto , Transtorno Depressivo Maior/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicologia do Esquizofrênico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...